
+

Adding Code to your app

LiveCode uses what is called Event Driven Programming. This means that your app will sit and wait
for the user to do something. This is an event. LiveCode will tell your app when there is an event.
You then add code to tell your app what to do when an event occurs.

LiveCode lets your app know what happened by sending a message to the most relevant control.
The message will tell your app what type of event happened and which control it happened to.

For example, when the user clicks on the tiger button, a mouseUp message is sent to the tiger
button. You add code to the tiger button, telling it what to do when it gets a mouseUp message.

There are hundreds of different messages in LiveCode, but you only need to add code for the ones
you are interested in sending.

+

Adding Code to the Stack

In this app, sounds should play when the user presses the buttons. You should have already
downloaded the sounds. They will be in the Resources folder, in a second folder named sounds.

You should have already downloaded the Resources folder in the previous step, but if you haven’
t, do that now!

Make sure that the folder named Resources has been moved so that it is in the same folder as
your stack.

To play the sounds, LiveCode needs to know where to look for the sound files, so we need to add
some code to our app that points to where these files are.

+

Adding Code to the Stack

Each object in LiveCode can have its own code associated with it. Stacks, cards, buttons,
etc, can all have code.

To make sure that our app can find the sound files it needs, we will set the Default
Folder when the stack is opened. The Default Folder tells your app which folder to look
in for external files.

Because we want this to happen when the stack is opened, we tell the stack to respond
the the preOpenStack message, which is sent to the stack when it is first opened.

Adding Code to the

Stack

To add code to the stack:

1. Open the Object menu.
2. Select Stack Script.

A new window will open - the Script
Editor. This is where you add your
code to the app.

You’ll see in the tab at the top that
you are adding code to the
soundBoard stack.

Adding Code to the Stack

Type the code below into the Script Editor. Then hit Apply (you will find this in the top left corner
of the Script Editor).

on preOpenStack
 set the itemDelimiter to “/”
 set the defaultFolder to (item 1 to -2 of the filename of me)
end preOpenStack

The indicator next to the apply button should go green, showing you there are no mistakes.

If the indicator is red, check your code for mistakes.

If the indicator is yellow, it means you have changed the code and not applied it. Always
remember to apply your changes so LiveCode recognises them.

What Does This Code Mean?

1. Just before the stack is opened, execute the code below
2. Set the item delimiter to “/,” which allows you to split pieces to text into items where the divider between

items is “/”.
3. Set the default folder - the folder where LiveCode will look for files - to the folder that this stack is saved in

me - the object the code the belongs to (in this case the stack)
filename - the full path to the stack file. e.g.

C:/Users/Elanor/Desktop/Jungle Soundboard/jungleSoundboard.livecode
so item 1 to -2 will be “C:/Users/Elanor/Desktop/Jungle Soundboard,” which is the folder the stack is saved
in

4. Stop executing the code

on preOpenStack
 set the itemDelimiter to “/”
 set the defaultFolder to (item 1 to -2 of the filename of me)
end preOpenStack

1.
2.
3.
4.

You want to set the default folder. The code that you added will do this when
the stack is opened, but our stack is already open.

We can tell LiveCode to send a message manually if we need to.

1. Ensure you are in Edit mode
2. Right/ctrl click anywhere on the stack, this will cause a popup menu to

show giving you a list of options
3. Choose Send Stack Message -> preOpenStack from the menu
4. This will cause the preOpenStack message to be sent to the stack

Once you have done that, the code that you just added to the stack will have
been executed and the default folder set!

Execute the preOpenStack message

Well done, you are halfway

through this step. Swap pairs

now.

Add a Player Object

In order to play sounds, you need to
add a player object to your app.

Drag out a player object from the
tools palette and drop it anywhere on
the app.

Add a Player Object

You do not want the user to be able to
interact with the player, so you want
to make it invisible.

Select the player and open the
Property Inspector by choosing Object
Inspector from the Object menu. Go to
the Basic Properties pane

- set the Name to animalSound
- uncheck the box next to Visible

The player should now be hidden!

+

Adding Code to the Tiger Button

Next, we want to add code to the tiger button that will cause the tiger sound to be played when
the button is clicked.

To do this, we tell the tiger button to respond to the mouseUp message. This message is sent
when the user releases the mouse button.

1. Make sure you are in Edit mode.
2. Select the tiger button.
3. Select Object Script from the Object menu.
4. Type the code on the next slide into the Script Editor.
5. Hit the Apply Button.

+

The tiger button code

1. When the user has clicked on this button, execute the following code.
2. Set the source file of the player to the tiger sound. LiveCode will look for this file in

the default folder, then in the Resources folder, and then in the sounds folder. This
is why it was important to put our sound files in the right place earlier.

3. Start the player - i.e. play the sound file that we have loaded into the player.
4. Stop executing code.

on mouseUp
 set the filename of player “animalSound” to "Resources/sounds/tiger.mp3"
 start player “animalSound”
end mouseUp

1.
2.
3.
4.

+

Test the Code

Switch into Run mode in the tools palette and click on the tiger button.

You should hear the sound of a tiger! Congratulations - you have added
functionality to your app! Just one more step and it will be complete.

Now we need to add code to the other two buttons so that we have a fully
functioning app!

